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Abstract

A non-conventional sandwich, made by a fabric panel core filled by a syntactic foam, and by resin-impregnated
fiberglass skins, is studied in the elastic range, with the aim of giving guidelines to its minimum weight design. Standard
homogenization techniques are employed to compute the elastic moduli of the skins, whereas a specifically developed
homogenization method has been used to obtain the elastic moduli of the core. A simple but accurate relationship for
computing the shear stiffness of the sandwich was used in conjunction with the well-known formulae for the bending
stiffness. Comparisons with both experiments and numerical predictions show good accuracy of both the proposed
homogenization methods and the overall stiffness evaluation procedure. © 2000 Elsevier Science Ltd. All rights re-
served.
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1. Introduction

Sandwich panels are often employed in structural applications when weight is a critical issue. The quest
for extreme lightness leads to the use, for instance, of honeycomb-core sandwiches, or foamed-core
sandwiches. In both cases, a so-called “antiplane’ sandwich is obtained in which the purpose of the core is
limited to transmitting shear stresses between the skins and to keeping the skin distance approximately
constant during the deformation.

These choices, however, may introduce sources of severe structural weakness. A major one is the pos-
sibility of debonding between the core and the skins, due, in the case of honeycomb-core sandwiches, to the
small contact area between the two layers. A second one relates to strength; in antiplane sandwiches usually
the average compressive strength of the core is negligible and, generally, very seldom exceeds the value of 10
MPa, whereas the compressive stress acting on the core itself may sometimes be of one order of magnitude
higher. An example occurs in aircraft applications, where a core strength of the order of 30-100 MPa is
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required to carry the load acting on lightweight sandwich panels in proximity of door hinges (Bunn and
Mottram, 1993). Also, the elastic stiffness of the core may be an issue.

One way to reduce the risk of delamination between core and skins has been devised in the mid-eighties,
when the so-called ““‘sandwich-fabric panels” have been produced in Belgium and in Germany. These are
obtained from woven, three-dimensional fabric, impregnated with resin and cured. The fabric is produced
by a velvet weaving technique, by skipping the last step of cutting the fabric into two parts. When this fabric
is impregnated with resin and cured, a solid panel is obtained, made by two thin skins of resin-impregnated
fabric and a core constituted by “piles” of resin-impregnated yarns. A schematic view of this product is
given in Fig. 1. A thorough description of the main features of these panels can be found in Van Vuure
(1997).

This material is a perfect example of an antiplane sandwich, which does not suffer from problems of
delamination as long as the piles connecting the two skins are close enough to each other, and which can
function as a proper sandwich as long as the shear stiffness of the core is sufficient to transmit shear stresses
and as long as the compressive stiffness of the core is sufficient to prevent relative motion of the skins in the
direction orthogonal to their plane. All these conditions are difficult to be met in such a way as to obtain a
sandwich usable in structural applications. Moreover, such sandwich has a core with no strength or stiffness
in the directions contained in the sandwich plane. Even filling the core of these panels with standard foams
does not improve this aspect, as standard foams, since already pointed out, often do not guarantee enough
stiffness or enough strength.

From these considerations, the idea arises of filling the core of sandwich-fabric panels with syntactic
foams, i.e., particulate composite materials made by a matrix of resin and a filler of hollow spheres.
Syntactic foams are materials with their own interest, since they exhibit several properties useful for many
applications. Among these, the most relevant, within the context of this work, are the low density coupled
with a reasonably high stiffness, the relatively high strength, good thermal and water insulation properties,
good impact strength and dimensional stability. Syntactic foams are used, for example, as floating material
in underwater machines, in aerospace plugs, in the construction of automotive tooling compounds and of
ablative heat shields for re-entry vehicles, and even in structural components for submarines and missiles.

The use of syntactic foams as a filler for the core of sandwich-fabric panels allows one to obtain a
sandwich, which maintains a low weight without incurring in the previously mentioned drawbacks. In this
work, we focus our attention on a sandwich obtained by starting from a fiberglass fabric, impregnated with
standard epoxy or polyester resins; the core of the sandwich-fabric panel obtained from this fabric is filled
with syntactic foams made again by standard epoxy or polyester resins and by hollow glass microspheres.

impregnated skins

Fig. 1. Sandwich-fabric panel.
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Finally, the skins of the sandwich are thickened by applying on their top further layers of resin-impregnated
fiberglass.

The purpose of this paper is to illustrate the elastic behavior of this sandwich, in order to understand
how its rather involved morphology influences its global stiffness. To do so, a minimum weight sandwich is
designed, which has a pre-defined stiffness with respect to a chosen loading condition.

The path followed implies first some elastic homogenization steps, required to reduce this highly non-
conventional sandwich to a “‘standard” three-layered sandwich, in which each layer can be assumed as
homogeneous. In particular, there is the need for computing the homogenized elastic moduli of the
sandwich skins, made by fiberglass and resin, for computing the homogenized elastic moduli of the syn-
tactic foam, made by resin, glass and air, and, finally, for computing the homogenized elastic moduli of the
sandwich core, made by yarns of fiberglass, resin and syntactic foam. The used homogenization methods
are briefly summarized in Sections 3 and 4; Section 5 reports a comparison between the analytical estimates
and some experimental results.

Having estimates of the elastic moduli of the three layers of the sandwich, it is possible to set up a simple
weight optimization procedure following the path indicated, for instance, in Gibson and Ashby (1988). In
our case, however, the situation is made difficult by two things: the fact that the sandwich is not of the
antiplane type, and the fact that we cannot easily obtain a relationship between the density and the stiffness
of the core, as done in Gibson and Ashby (1988). In Section 2, we will describe how we computed the
sandwich stiffnesses, and, in Section 6, we will describe the results obtained in minimizing the weight of the
sandwich under a given constraint on its overall stiffness.

2. Elastic stiffness of a symmetric sandwich beam

Let us assume to study the elastic stiffness of a sandwich beam of total length / and width B, made of
three homogeneous layers, as indicated in Fig. 2. The considered sandwich is symmetric, i.e., its external
layers (skins) have identical thickness ¢. The thickness of the core is indicated with the symbol ¢. With
reference to the terminology used in Allen (1969), we classify our sandwich as one with thick skins and a
non-antiplane core.

The computation of the deflection of a thick skinned non-antiplane sandwich beam can be made using
different assumptions, depending on the required degree of accuracy; two possible solutions are suggested in
Allen (1969). The first one is approximate and nevertheless very involved, initially formulated for antiplane
sandwiches, and extended to the case of non-antiplane core by Allen by adopting the further approximation
that the displacement field along the sandwich core is linear. Results obtained using this method, indicated
as “Allen’s method”, will be briefly commented on later.

Ax, layer 1 (skin)

L
e
I L

Fig. 2. Geometrical parameters of sandwich.
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A second possible solution is based on the Total Potential Energy theorem, which requires the choice of
an admissible displacement field along the height of the sandwich section. This approach leads rapidly to
very involved computations, and in Allen (1969), it is used only in conjunction with the Ritz method, to
obtain approximate solutions, and only for the antiplane core case. We have derived the exact solution, for
the three-point bending case, using a kinematics more general than that used by Allen, and in the case of
non-antiplane sandwich core (for details see Bardella and Genna, 1999). The results thus obtained will be
compared to others in the following, and will be denoted as “Total Potential Energy” results.

Both these methods have some drawbacks, beside their analytical complications, most notably that of
failing to yield correct results for special cases, such as that of thin skins, or, worse, that of a homogeneous
beam. For this reason, we have chosen to follow a third, extremely simple approach, based on the classic
approximate shear force treatment by Jourawsky and on the Navier—Bernoulli homogeneous beam kine-
matics.

Within this framework, the maximum deflection of a sandwich beam of length /, under general loading
and constraint conditions, can be written as follows:

PP? Pl
7Y]D+Y2(GA*)’ (2.1)
where P is the total resultant force applied to the beam, D indicates the bending stiffness, G is the shear
modulus, 4* is the shear area and Y;,Y, are numerical constants, which depend on both loading and
constraint conditions. For instance, in the four-point bending case and for a simply supported beam, which
will be used for comparison with experimental results,

]

4
h=—r, (2.3)
_p

[

where /, is the distance between the two concentrated loads, each of magnitude P/2. In the particular case
of three point bending one has to set /, = 0 in Egs. (2.2) and (2.3) (i.e., the force P is equal to a concentrated
load applied at the beam midspan), which leads to ¥; = 48 and ¥, = 4.

In the case of a thick skinned, non-anti-plane sandwich, the bending stiffness D includes three terms,
deriving from contributions of both skins and core, written, with reference to the geometry of Fig. 2, as
follows:

B Btd? B
D=Esk<%+t7d> +Ec%, (2.4)

(2.2)

where E indicates the Young modulus, subscript sk refers to skin properties, subscript ¢ to core properties
and d = ¢ + ¢ indicates the distance between the middle planes of the two skins. This is a completely
standard result (Allen, 1969).

A more complicated problem arises from the need for evaluating the sandwich shear stiffness. In fact, the
presence of a relatively stiff core and thick skins makes the kinematics of a sandwich beam in bending much
different from that of a standard beam, which compels us to take into account the shear deformability in a
rather complicated way. Such phenomenon is the cause of the involved methods mentioned above; how-
ever, if one simply assumes that a plane sandwich section remains plane during the deformation, by de-
veloping the classical beam analysis for shear stresses due to shear force, one can compute the shear stresses
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in the three layers of the sandwich. Thereafter, one can obtain the “equivalent” shear stiffness of the
sandwich by equating the expressions of the work of deformation in the sandwich beam and in the homo-
geneous equivalent beam. After some lengthy algebra, the following results are thus obtained:

5

(GA") = (2.5)

6
4 . 1 ’
Asstk(l + O(s) ACGC(I + OCC)
where Ay = 2B is the area occupied by the skins in a beam section, 4. = ¢B is the core area and the in-
teraction coefficients o and o, are defined as follows:
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where 7 is the ratio between the Young moduli of skins and core:
Esk
=—. 2.8
= (238)

Despite the conceptual simplicity of this computation, we have not been able to find any reference to it in
the literature. In order to verify the accuracy of Allen’s method, of the Total Potential Energy method and
of results (2.5)—(2.8), we have run some finite element simulations, on an arbitrary geometry of sandwich
beam, for several values of ratios n and several values of ratios #/c. The relevant results are shown in Fig. 3,
where percentage errors given by the three approaches (Allen, Total Potential Energy, Jourawsky), com-
puted using the finite element solution as reference solution, are plotted as function of the ratio ¢/c for some
values of coefficient 7. It is apparent that Allen’s method gives the worst results in all cases (it fails badly, in
particular, for ratios ¢/c — 0) and that even the Total Potential Energy method, in which the “exact”
sandwich beam kinematics has been inserted, is not really accurate, owing to the inconsistency between the
use of a trilinear kinematic model (Allen, 1969) and the strain field implied by Jourawsky’s approach.
The results given by Egs. (2.5)—(2.8) seem to be an acceptable approximation of finite element results over
the whole range of variables considered.

In the following, therefore, we will use Egs. (2.4) and (2.5)-(2.8) to compute the equivalent elastic
stiffnesses of a sandwich beam. In particular, we will need them in Sections 5 and 6. In Section 6, we will
prescribe Eq. (2.1) as a constraint during the weight optimization of the sandwich. During this process, we
will also use, as a simpler approximation, both the expressions of the bending and shear stiffness, both for
thin skins and antiplane core:

Btd?
= Lsgk —x :
D=E (2.9)
2
(GA") = G.Bd. (2.10)

3. Homogenization of the syntactic foam

The application of the equations providing the stiffness of a sandwich beam, briefly summarized in the
previous section, requires the knowledge of the values of the elastic moduli of the layers of the sandwich,
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Fig. 3. Percentage errors of methods for the computation of sandwich beam deflections.

i.e., of the skins and of the core, seen as homogeneous materials. As, in reality, each layer of the studied
sandwich is made up of a composite material, we need to estimate the “equivalent” elastic moduli of these
layers by means of suitable homogenization techniques.

For this sandwich, there is the need for homogenizing at two different geometric scales. The first one
refers to the syntactic foam, which fills the space left, in the core of the sandwich, by the resin-impregnated
yarns of the sandwich-fabric panel. The syntactic foam is itself a composite material, whose inclusion size is
about 5-100 pm. The second scale is that defined by the inclusions of both skins and core; in the skins, the
inclusions are the glass fibers, whereas in the core, the inclusions are defined by the glass yarns surrounded
by resin. Here, the geometric scale of the inclusion is about the diameter of one glass yarn, i.e., according to
Van Vuure (1997), of the order of 0.1-0.5 mm.

As the geometric scales of the syntactic foam and of the sandwich core are different by roughly one order
of magnitude, it is possible to compute the homogenized elastic moduli of the core by means of a two-step
homogenization technique: the first one, to compute the equivalent elastic moduli of the syntactic foam,
and the second one to compute those of the core itself. The second step will be described in Section 4.
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The first step is somewhat involved, owing to the presence of the hollow microspheres as a filler of the
foam. This fact makes it difficult to particularize classical homogenization methods, which, in this situation,
tend to perform poorly. We have been able to find only four references specifically concerned with the
homogenization of syntactic foams (Lee and Westmann, 1970; Huang and Gibson, 1993; Nielsen and
Landel, 1994; Hervé and Pellegrini, 1995). The methods proposed in the first three references do not yield
accurate results over a wide range of material parameters.

The paper by Hervé and Pellegrini (1995) gives indeed a complete theoretical treatment of the problem of
determining the elastic constants of a material containing spherical coated holes, considering the extremely
general case of n spherical layers. In Hervé and Pellegrini (1995), however, the authors particularize their
full analytical solution only to the case of standard foams.

There are two more difficulties to be taken into account when trying to compute the homogenized elastic
moduli of real syntactic foams. The first one is the possible presence of “unwanted” air, due to the pro-
duction modalities, which cannot be taken into account by the formulae of Hervé and Pellegrini. The
second is the scatter of the filler geometry — in particular, the gradation of the ratios a/b between the inner
and outer diameter of the spheres, which may have a strong effect on the final stiffness of the syntactic foam.
Also, this feature cannot be taken into account by using the results of Hervé and Pellegrini.

We have therefore extended the model of Hervé and Pellegrini, limiting ourselves to the case of syntactic
foams, i.e., by setting n = 3 in their n-layered inclusion model, by considering a representative volume
element (RVE) made by N different composite sphere types (Hashin, 1962), each characterized by a specific
value of the ratio a/b. In this way, we can consider both the actual gradation of the filler and the presence of
a void phase entrapped in the matrix, corresponding to setting a/b = 1. All the results obtained by this
model are reported in Bardella and Genna (2000).

It might be worth commenting on the possibility of using a simpler sequential homogenization technique
to take into account the presence of voids in the matrix. Such a procedure — first homogenize the voids with
the matrix material, then use, for instance, Hervé and Pellegrini result to homogenize the inclusions with the
weakened matrix — can reasonably be used when the geometric scales of voids and inclusions differ by at
least one order of magnitude. In our syntactic foams, unfortunately, this is not the case, since the used
microspheres, as said, have an average diameter of 5-100 um, and the void bubbles present in the matrix
have a comparable size (Bardella and Genna, 2000). Therefore, it is inconsistent to first homogenize the
voids and then the hollow inclusions, and the only proper way to proceed is to homogenize the three phases
simultaneously.

In the present paper, we have not tackled the study of the effect of the filler gradation on the global
stiffness of the sandwich, expected to be non-significant. Also, in the design of the “optimal’’ sandwich, we
have assumed, for the sake of simplicity, that no “unwanted’ voids are present into the syntactic foam. In
this case, the formulae we have used to compute the homogenized elastic moduli of the syntactic foam are
those given by Hervé and Pellegrini (1995) for n = 3; since their results are not particularized to the case
n = 3 and are therefore rather involved, here we report the explicit formulae we have used in the process of
identifying the lightest sandwich. When comparing experimental with analytical results, however, we had to
resort to the complete results reported in Bardella and Genna (2000), as, in this case, the presence of voids
in the matrix had a significant effect and could not be neglected.

In the homogenization technique, the syntactic foam is considered as a macroscopically homogeneous
and isotropic material; this assumption is justified by the statistically random distribution of both position
and geometry of the inclusions, clearly visible in the image shown in Fig. 4, obtained by the scanning
electron microscope. The assumption of perfect bond between matrix and filler has always been made.

The used physical model is similar to that proposed by Christensen and Lo (1979) to homogenize
particulate composites with solid inclusions. As done by Hervé and Pellegrini (1995), we extended the
results of Christensen and Lo by computing elastic solutions of a four-phase model, illustrated in Fig. 5,
which consists of a hollow “composite sphere”, surrounded by an infinite medium of arbitrary material.
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Fig. 5. The four-phase model used for the homogenization of the syntactic foams.

Going through the relevant average operations, over the various phases of the composite and after some
lengthy algebra, one arrives at the following form for the “best” estimate G, of the shear modulus of a
syntactic foam:
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a5 GO 2 a5 GO F2F3 —F'1F4
(40H1S—5> (G—m> +(2ﬂ—5—8(ﬂ+31%)s—5> (G_m)+T:0’ (3.1)

where Gy, is the shear modulus of the matrix (i.e., the shear modulus of the epoxy resin), and whose co-
efficients Fy, F», F;, F, and H; are given in Appendix A.

The significant root of the quadratic Eq. (3.1) for Gy is positive (i.e., greater than the value of the shear
modulus of the void), and lower than the highest value between the shear modulus of the matrix and that of
the inclusion.

The solution for the homogenized bulk modulus is (Lee and Westmann, 1970)

b’ b’
S° 8-

Ky = K, , (3.2)
b3 b3
5(1 s_*> +K<y+s—3)
where
4Gy, 4G; a 4G, o

in which index i refers to properties of the inclusion’s wall (glass, in our case).
The accuracy of the predictions given by this homogenization technique is shown in Fig. 6, which refers
to a syntactic foam made by an epoxy resin of the type DGEBA, with hardener DDM and microspheres
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Fig. 6. Comparison of analytical estimates of the homogenized Young modulus of the syntactic foam with numerical simulation re-
sults.
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taken from the industrial batch produced by 3M and described in the report 3M Italia (1993). All the
data about these materials are furnished in Bardella and Genna (2000). Fig. 6 compares the analytical
predictions with numerical ones, obtained by the finite element analysis of a unit cell of material (Bardella
and Genna, 2000), for several different types of microspheres; for all cases, the analytical results agree
reasonably well with the numerical ones and, more important, for all cases, the analytical results are able to
correctly predict the slope of the homogenized moduli curve as a function of the volume fraction of filler.

4. Homogenization of the fiber-reinforced resin and of the sandwich core

The computation of the equivalent elastic moduli of the sandwich layers, assuming to know the values of
the elastic moduli of glass fibers, resin and syntactic foam all seen as homogeneous isotropic materials, at
the length scale of the sandwich, can be performed exploiting results available in the literature. However,
since the morphology of the studied sandwich is extremely complex, the use of standard results requires
some interpretation.

With reference to the cartesian reference system xi, x», x3, shown in Fig. 2, both the skins and the core can
be approximately considered as transversely isotropic, where every plane containing axis x; (or any other
axis parallel to it) is a plane of material symmetry.

This statement is sufficiently accurate in the case of the core, where the geometry of the yarns connecting
the two skins does not give rise to preferential directions in the plane x,—x; (the yarns may be placed at
different distances in the warp direction and in the weft direction; a moderate in-plane anisotropy can be
expected from this arrangement, but it can definitely be neglected when considering the overall behavior of
the sandwich).

Actually the resin-impregnated glass yarns — the piles in the core — can be shaped in various ways, from
straight, if the sandwich-fabric panel is subjected to a process called “adhesive foil stretching” (Van Vuure,
1997), to S shapes and C shapes, if the panel is not stretched. Also, the piles, during the impregnation
process, group together, to form the so-called ““pillars”’; these, depending on the production process, can be
inclined with respect to axis x;, and are often designed on purpose with an inclination of +45°. All these
possibilities complicate somewhat the geometrical description of the sandwich core; however, for most
practical purposes, the assumption of considering straight pillars only can be considered acceptable.

Of the possible methods, for the computation of the homogenized elastic moduli of transversely isotropic
composites, we have used that proposed by Walpole (1969), which actually considers the single phases of
the composite as transversely isotropic as well.

The use of Walpole’s method for our materials, however, requires some interpretation, as Walpole gives
bounds for all the elastic moduli of the composite, and we have to understand what bounds are to be chosen
in relation to the morphology of both the skins and the core of the studied sandwich.

Our composite materials — both the skins and the core of the sandwich — are transversely isotropic only
because of the geometrical layout of their constituents, which can be considered, individually, as isotropic.
In this case, the bounds given by Walpole can be applied for any possible geometrical arrangement of the
single phases which, being individually isotropic, can always be imagined as having an axis of transverse
isotropy coinciding with the global axis of transverse isotropy, x;.

For the purpose of this work, we need to estimate the values of the in-plane Young and shear moduli of
both the skins and the core, hereafter indicated by the symbols £, and G, respectively.

In the core, where the stiff glass fibers are aligned with the direction of the axis of transverse isotropy,
when considering the in-plane behavior (x,—x3), the stiff inclusion phase is not connected and evidently
offers little contribution to the global stiffness. For this reason, we have chosen to use the lower bound given
by Walpole for the Young modulus. The reasoning becomes more difficult in the case of the shear modulus;
therefore, in order to get a better understanding, we also computed the analytical estimates for a trans-
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versely isotropic material given in Hervé and Zaoui (1995), which apply to a material, whose morphology is
exactly that of the core of our sandwich (but not that of the skins). For both the Young’s and the shear
modulus, we obtained results practically coinciding with Walpole’s lower bounds. Therefore, in order to
avoid the description of a further set of formulae in this paper, we decided to use Walpole’s lower bounds to
compute the elastic moduli of the core.

In the case of the skins, the presence of a layer of fabric, lying in the middle planes of skin, parallel to
plane x,—x3, introduces a moderate amount of anisotropy in the plane. Such anisotropy is shown by lab-
oratory tests performed on the skins only (Bardella and Genna, 1999), which indicate values of Young’s
moduli, for a particular choice of basic ingredients, in the ratio E,/E; a 1.20. This ratio is closer to unity
than one might expect, considering the strong orthotropy of the fiberglass, fabric from which the sandwich-
fabric panel is obtained; one needs to recall that, in the final sandwich, the skins are reinforced by the
application, during the curing phase, of further layers of resin-impregnated fiberglass, in which the glass
fibers are randomly oriented. These layers, whose thickness is significantly greater than that of the skin
obtained by impregnating the original fiberglass fabric, are in themselves almost exactly transversely iso-
tropic around axis x;. The final result is that, as said, of a moderate anisotropy of the skins in their plane,
which contains the stress components of interest to us. However, for all practical purposes, in the sequel of
this work, we will assume that the skins are also transversely isotropic around axis x;.

For the skins, unlike the case of the core, the internal morphology sees the stiff glassy phase aligned in
the skin middle plane, i.e., close to a “parallel”” arrangement with the matrix phase. This suggests the use of
Walpole’s upper bound for Young’s modulus of the skins.

The interpretation of the values of the shear modulus is again more difficult. As we could not find any
other reference to specific methods to compute such constant, we decided to use, as an estimate of the value
of the skin shear modulus, the average value between the lower and the upper bound. On the other hand,
the value of the shear modulus of the skins has almost no relevance on the overall stiffness of the sandwich,
and we do not expect this assumption to be the cause of significant errors.

A macroscopically transversely isotropic material is characterized, in the linear elastic range, by five
independent elastic constants, which can be chosen in different ways. Walpole (1969) gives bounds for all
the following constants:

. ;c(zg), plane strain bulk modulus, with reference to the isotropy plane x,—x3, defined by the following strain
field: ¢, =0, ¢,, = ¢33 = ¢ and by the relationship 0y =633 =0 = ZK(;;)(p;
. G(z?, shear modulus in the isotropy plane, defined by the following relationship: g,3 = 2G£)q)23;

. G(lo), shear modulus, defined by any of the two following relationships: o, = 2G§0)g012, o3 = 2G(10)q)13;
e L cross modulus, as defined by Hill (1964);
e N Jongitudinal modulus in the direction of axis x; in the absence of transverse deformation,
where the superscript (0) indicates homogenized values for the equivalent homogeneous material.

The meaning of the last two constants is defined by writing a transversely isotropic constitutive law in the
following way:

Hon +033) = Kg)(q’zz +¢33) + L%, (4.1)
on =L@y + @3) + Ny, (4.2)

g = 2GY _ — 26V 4.3
022 — 033 5 (0 — 933), 023 23 P23, (4.3)
12 = 2G§0><P127 13 = 2Ggo)(/’u- (44)

Here we write explicitly the specialization of Walpole’s results to the case in which the single components of
the composite are isotropic. In this case, each phase is characterized by two elastic constants only, instead
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of the five used by Walpole. In order to re-write Walpole’s equations using his constants, we need to make
the following replacement of elastic constants of each single phase {:

LV = 1y — Gy, (4.5)
N© =i + Gy, (4.6)
Gy =Gy 47)

In this way a single isotropic phase { is characterized only by two elastic constants Gg%) = Gy, and
K§;> = Kkr = Ar + G, where J; is the second Lamé constant.

The formulae to compute lower (superscript low) and upper (superscript up) bounds to the five elastic
moduli for a transversely isotropic composite made by m isotropic phases, each of volume fraction c¢,, with
> " ¢, = 1, are the following, where to obtain lower bounds one needs (i) to replace the symbol % with the
symbol low in the homogenized moduli and (ii) to give to the constants indicated with subscript %, at the
right-hand sides, the lowest values of the same constants among the single phases; to obtain upper bounds,
one needs to replace the symbol % with the symbol up in the same way:

_1
m c,
K;;:(Z Kr+G*> - Gy, (4.8)

r=1

—1
n C, G*K*
G*, = (4.9)
GxKx Kx +2G
e * +2Gx
m -1
C
GF = — -G 4.10
1 (rz_]: Gr + G* ) * ( )
< Cy (Kr - Gr)
K.+ G
= i (4.11)
C,
—1 Ky + G*
& cr(Kr Gr) zm: cs(K.\ - Gs — K, + Gr)
- r=1 Ky + G* s=1 Ks + G*
N* = i+ G) + - . (4.12)
= Cr
K, + G*

Of course, for the case of the core homogenization, one must set m = 3 (fiberglass, resin and syntactic foam)
and, for the homogenization of the skins, m = 2 (fiberglass and resin).
The expression of the in-plane Young modulus EI()O), previously defined, is the following:

0 0
4G(23> Kgs)
2 0
(L")GY
Koy NO — (L00))?

0) _
EO = (4.13)

Ky + Gy +
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It is not easy to understand how to combine the upper and lower bounds (4.8)—(4.12) to obtain upper and
lower bounds of the in-plane Young modulus (4.13), since this dependence varies with the number of the
phases and their relative stiffnesses. For the sandwich studied here, and for the common values of the elastic
moduli of the various phases, we have found that the following relationships always give lower and upper
bounds of the in-plane Young modulus Ej:

low  low
4Gy Ky

low __
Ep B low Glow (Lup)zGlZ%w ’ (414)
Ky + Gp3 +71°WN1°W _ (L“P)2
K23
u 4G
B = 23 (zslowaup (4.15)
23

up up
Ky + Gy + PN — (Llow)z

Owing to the microstructural arrangement of the core and of the skins of the sandwich under investigation,
for the reasons illustrated at the beginning of this section, we will use the lower bound (4.14) as an estimate of
Young’s modulus of the core, and the upper bound (4.15) as an estimate of Young’s modulus of the skins.

An indication about the accuracy of this choice has been sought both for the skins alone and for the core
of the sandwich. For the skins, experimental results have been obtained by means of uniaxial tension tests
performed in our Laboratory (Bardella and Genna, 1999). The skins were made of an epoxy resin with
Young’s modulus E; = 3700 MPa and Poisson’s coefficient v, = 0.4, with a volume fraction f; = 0.342 of
glass fibers, with Young’s modulus E, = 73000 MPa and Poisson’s coefficient v, = 0.23. The average
values of the in-plane Young moduli for this material are £y = 13720 MPa in the warp direction and
E; =16360 MPa in the weft direction; with the same data, the upper bound estimate (4.15) is
E, = 16300 MPa, in reasonable agreement with the experimental results.

We could not perform any experimental test on the core material of the sandwich, made of the syntactic
foam mixed with the resin-impregnated glass yarns. Therefore, we have tested the accuracy of the pre-
dictions given by the lower bound (4.14) by means of numerical simulations, performed on a three-
dimensional unit cell of the material. The glass yarn, surrounded by resin, has been considered as a
cylindrical element of circular cross section; its inner part is made of glass, and a circular ring of resin has
been added around it; the volume fraction of glass, in this cylindrical element, is equal to that of the glass in
the skins, i.e., f; = 0.342.

The unit cell is prismatic, of height equal to ¢ (thickness of the core) with a square base, whose sides are
chosen to be equal to the average distance between the piles in the sandwich-fabric panel. Periodicity
boundary conditions have been prescribed on the vertical sides of the prism. The materials here are the
same resin and glass used for the skins, and microspheres taken from the 3M industrial batch of the type K1
(3M Italia, 1993).

Fig. 7 shows the used mesh, and Fig. 8 compares both the analytical predictions (4.14) and (4.15) with
the numerical results, for volume fractions of impregnated glass fibers (“pillars”) in the core ranging from
Jf» = 0to f, = 0.2; actual values of this parameter, for the studied sandwiches, are of the order of £, =~ 0.05.
As expected, there is a reasonable agreement of the numerical results with the lower bound estimates.

5. Verification of the model by comparison with experimental results
The homogenization methods described in the previous sections give the values of the elastic moduli of

both the skins and the core of the sandwich, considered as homogeneous materials, as function of the
geometric and material parameters of their constituents. Therefore, we can treat the sandwich, from now
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Fig. 8. Comparison of Walpole’s bounds on in-plane Young’s modulus of the sandwich core (Egs. (4.14) and (4.15)) with predictions of
numerical simulations.

on, as a standard sandwich, and use the relationships summarized in Section 2 to compute its stiffness in
bending.

In this section, we compare the results of the analytical predictions with some experimental results
obtained at the Politecnico of Milano (Maier, 1998). These results refer to a single type of sandwich, and to
two different testing modalities: three-point bending and four-point bending.

The basic materials of the sandwich — resin and glass — are of the type already described in Section 4:
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e ¢poxy resin, Young’s modulus E, = 3700 MPa, Poisson’s coefficient v, = 0.4, density p, = 1.15 g/cm?;
o glass type “E”, Young’s modulus E, = 73000 MPa, Poisson’s coefficient v, = 0.23, density p, =

2.6 g/cm’.

The sandwich-fabric panel is made up of resin and glass fibers with the volume fraction of glass f, = 0.342.
After impregnation of the glass fabric with resin, and after curing, a panel is obtained with skin thickness
t =~ 0.35 mm and with core thickness ¢ varying in the range 5 < ¢ <20 mm. Depending on the desired core
thickness, various pillar shapes are obtained, and each pillar, made up of many impregnated glass yarns,
has a quite variable cross-section geometry. Further work is currently under way to understand the im-
portance, if any, of the actual pillar geometry on the whole sandwich stiffness; in this paper, we have always
considered the geometry of the “average” pillar, among those observed by us, and have kept it fixed to that
of a cylinder, of circular cross-section of radius R = 0.2142 mm. The density of pillars in the core is also
variable from one type to the other of sandwich-fabric panel; the most common cases have a density of 25
pillars/cm?.

During the curing process of this panel, as said above, further layers of impregnated glass fibers are used
to thicken the skins, which may reach thicknesses of the order of 1-3 mm. The layers are made by the same
glass fibers and resin as the starting panel, with the same volume fractions.

The syntactic foam used to fill the voids in the core of the sandwich-fabric panel is made with the same
resin as the panel, and with hollow glass microspheres of the type K1, taken from the industrial batch
produced by 3M (3M Italia, 1993). These spheres have average diameter @ = 70 um, and ratio a/b between
inner and outer radii equal to a/b = 0.9836.

We could compare estimates of the stiffness of such sandwich, as given by the assemblage of the tech-
niques illustrated above, with some experimental results obtained in three- and four-point bending by a
research group working in parallel with ours (Maier, 1998). The sandwich beam had length / = 60 mm,
width B = 30 mm, skin thickness ¢ ~ 2 mm and core thickness ¢ ~ 11 mm.

In computing the analytical predictions of the sandwich deflection, we have taken into account the
“unwanted” void content in the syntactic foam. In fact, owing to the production modalities of both the
syntactic foam and the final sandwich, the sandwich core contained a significant quantity of ‘“‘unwanted”
voids, some of which were clearly visible. The source of the experimental results (Maier, 1998) does not
report explicitly the void content relevant to these tests, but it does give some information, apparently
about the same sandwich, relevant to different types of testing. According to these data, the average void
content of the sandwich core is 30%. Using this information, we could determine the volume fraction of the
K1 microspheres present in the syntactic foam filling the core, equal to f = 0.3877, and then the effective
elastic moduli of the syntactic foam filling the core (see Bardella and Genna (2000), for the formulae al-
lowing to consider the influence of the “unwanted” voids): £, = 1190 MPa and G; = 456 MPa.

Tables 1 and 2 summarize the experimental results given in Maier (1998). For the three-point bending
case, the estimate given by the set of analytical tools described in the previous sections furnishes the value
0/P =1.239 x 107* mm/N, whereas, for the four-point bending case, the analytical estimate is
d/P =0.9213 x 10~* mm/N. The experimental results exhibit some dispersion, whose causes are not easily

Table 1
Three-point bending experimental results (Maier, 1998)
Specimen Load P (N) Displacement 6 (mm) §/P (mm/N) x 10*
BBPL2 4991 0.93 1.863
BBPL3 4998 0.54 1.080
BBPC2 4998 0.79 1.581
BBPC3 4989 0.94 1.884

AAPL2 4998 1.36 2.721
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Table 2
Four-point bending experimental results (Maier, 1998)
Specimen Load P (N) Displacement 6 (mm) 8/P (mm/N) x 10*
BBPL2 7988 0.85 1.064
BBPL3 7991 0.75 0.939
BBPC2 7999 1.27 1.588
BBPC3 8003 0.77 0.962
AAPL2 8000 0.89 1.113

explained (and no attempt at doing that is found in Maier (1998)). The analytical results tend to overes-
timate the stiffness of the sandwich with reference to all the tests, by an average value of about 32% for the
three-point bending case, and of 17% for the four-point bending case. Among the possible causes of this
discrepancy, beside the uncertainty about the material and geometry data, is the brittleness of the very thin
and large K1 spheres, which might break during the production stage of the syntactic foam, thus increasing
the “weak phase” content. Another possible explanation lies in the orthotropy of the skins in their plane,
neglected by our model, which assumes, as the Young modulus of the skins, a value coincident with the
maximum experimental value (in the weft direction — see Section 4). In any case, considering the compli-
cation of the morphology of this sandwich, the obtained results can be considered acceptable from an
engineering viewpoint.

6. Design of minimum weight panels

We can now turn to the design of an “optimum’ sandwich with respect to its elastic stiffness, considering
the possibility of changing all the involved geometry and material parameters. We have explored a choice of
both resin and microsphere types, by considering, among the design variables, the resin material parameters
and the microsphere geometry, defined, for our purposes, only by the ratio a/b. These variables are all
discrete variables, taken from a ““catalog”. For the resin, we have considered four different materials, whose
properties are summarized in Table 3. For the microspheres, we have made reference to the data given by
3M, reported in 3M Italia (1993), and summarized, for the part here of interest, in Table 4. We have always
considered a “perfect” syntactic foam, i.e., one in which neither extra voids are present nor the filler
particles break during the production process or under the action of the loads.

On the basis of these data, we have explored the influence, on the weight of the sandwich, of a number of
basic variables:

e resin material parameters, considered as a discrete variable taken from the above “catalog’ (Table 3); we
assume to have used the same resin for producing both the sandwich-fabric panel and the syntactic foam;
e microsphere material parameters, considered as a discrete variable taken from the above “catalog” (Ta-

ble 4);

e volume fraction f of microspheres in the syntactic foam; this is a continuous variable, varied in the in-
terval 0.4 < 1 < 0.6; the lower limit is based on engineering considerations, whereas the upper one is the

technological packing limit of the microsphere-resin mix;

Table 3
Resin properties
Resin type E: (MPa) ve () pr (g/em?)
1 3700 0.4 1.15
2 2800 0.4 1.18
3 4890 0.4 1.24
4 3500 0.4 1.10
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Table 4

Sphere properties, from 3M Italia (1993)
Sphere type Median diameter (pum) a/b (—) P (g/cm?)
K1 70 0.9836 0.125
K15 70 0.9802 0.15
K20 60 0.9734 0.20
S22 40 0.9709 0.22
K25 55 0.9667 0.25
S32 45 0.9569 0.32
K37 50 0.9501 0.37
S38 45 0.9489 0.38
K46 50 0.9376 0.46
S60 30 0.9175 0.60

e we have kept fixed the volume fraction of glass fibers in the skins and in the pillars of the core to the
value f, = 0.342; this seems to be a technological constraint, which, however, could easily be removed
in this theoretical analysis;

e core thickness ¢, continuously varying in the interval 5 <c¢ < 100 mm;

e skin thickness ¢, continuous variable, constrained to be smaller than ¢;

o distance between the pillars in warp direction, b,, and in weft direction, b., continuous variables con-
strained to be larger than the diameter of one pillar for obvious reasons. As already said, the diameter
of one pillar has been kept fixed in this analysis, to the value 2R = 0.4284 mm; also, this information
could easily be considered as a design variable.

We then want to find the set of the preceding values which minimizes the total weight W of a sandwich

beam of length / and width B (as schematically shown in Fig. 2)

panzc nR’c
W = gBI|2pgt — 6.1
g Psk + babe + Ps (C babe ’ ( )

where g is gravity acceleration, p, is the pillar density (in our case equal to the skin density, and computed
on the basis of the resin density indicated in Table 3, the glass density p, = 2.6 g/cm® and the prescribed
volume fraction of glass in the composite, f, = 0.342) and p, is the density of the syntactic foam, computed
on the basis of the resin and microsphere densities and on the sphere volume fraction f.

We have here chosen to perform the minimization under the constraint given by Eq. (2.1), i.e., in such a
way that the final sandwich has a constant stiffness with respect to the three- and four-point bending test.
Extending this constraint to more general loading and geometry conditions requires the knowledge of
relationships analogous to Egs. (2.1)—(2.3), valid, for instance, for bending of plates, etc. The overall beam
geometry here considered is / = 200 mm and B = 50 mm; we have started with the three-point bending
case, i.e., by setting /, = 0 in Eqgs. (2.2) and (2.3).

The minimization of the total weight (6.1) is obviously non-linear, and cannot be performed by means of
standard procedures. We have therefore both studied the objective function as a function of some of the
design variables, in order to understand what type of minima are to be sought, and implemented a very
simple search algorithm, able to compute a global minimum at a rather high cost. The algorithm requires,
at each step, having chosen a set of independent variables, the following computations:

. elastic moduli of the skins, based on Egs. (4.10) and (4.15);

. elastic moduli of the syntactic foam, based on Egs. (3.1) and (3.2);
. elastic moduli of the core, based on Egs. (4.10) and (4.14);

. bending stiffness of the sandwich (Eq. (2.4));

. shear stiffness of the sandwich (Egs. (2.5)—(2.8));

[ SN R N
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6. solution of the non-linear Eq. (2.1), where the ratio /P is assumed as a given datum; in our computa-
tions, it has been kept fixed at the value 6/P = 0.001 mm/N. This operation, rather involved owing to
the strong nonlinearity of the problem, allows us to eliminate one design variable from the variable set;
we have here chosen to eliminate the sandwich thickness ¢;

7. computation of the weight of the sandwich and selection of the minimum among all those computed pre-
viously.

It is obvious that even a single optimization step requires a considerable effort. For this reason, before

performing the optimization, we have studied the behavior of the objective function keeping fixed several

design variables and varying the remaining ones. The results of this preliminary analysis are shown in Figs.

9-14.

Fig. 9 illustrates the variation of the sandwich weight consequent to the variation of the resin choice, for
all the microspheres used in the analysis. In this case, resin material parameters have been considered as
continuous variables; the density has been taken as an independent variable and Young’s modulus has been
correlated linearly to the density, as a first approximation on the safe side, on the basis of results given in
Ashby (1989), by means of the following relationship:

E, = 4750p, — 1848, 0.5<p,<2.5 (6.2)

in which Young’s modulus is expressed in MPa and the density in g/cm?. All the other variables (with the
exception of 7) are set fixed at their “optimum” values, which we will comment about later in this section.
It is apparent from Fig. 9 that the best sandwich, with respect to the stiffness constraint (2.1), is always
found using the lightest resin and the lightest microspheres. We will see in a moment that this tendency
carries out with respect to more or less all the other design variables.
Fig. 10 illustrates the effect of varying the volume fraction of microspheres in the syntactic foam, for the
four resin types considered here and for the lightest and heaviest sphere types. Again, the best sandwich is

Effect of variation of resin
E_r=4750%*ro_r - 1848 (MPa, g/cm”3)

Young Modulus of resin E_r [MPa]
500 2902 5277 7652 10000

Sandwich weight [N]

Density of resin ro_r [g/cm"3]

Fig. 9. Effect of variation of resin on the total weight of a sandwich beam of constant stiffness (E, = 4750p, — 1848, MPag/cm?).
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Fig. 14. Effect of variation of the core thickness on the total weight of a sandwich beam of constant stiffness.

always that made up of the lightest ingredients, which means the maximum possible volume fraction of the
lightest microspheres in the lightest resin.

Fig. 11 relates to the choice of the microsphere stiffness, as if it were a continuous variable. We have
computed the sandwich weight, always under constraint (2.1), as function of the ratio a/b; values of a/b
smaller than 0.7 result in unfeasible solutions. It can be seen that, in this case, there is an optimum inclusion
stiffness, given by ratios a/b very close to unity, without being equal to 1 (which would mean standard
foams, with void inclusions). This indicates that even with the objective of minimum weight, syntactic
foams are preferable to standard foams. In our case, of sandwiches which may be employed in underwater
applications, standard foams are to be avoided in any case.

In Fig. 12, we have explored the influence of a variable, which has actually been kept fixed in the
analysis, for the above-said reasons, i.e., the radius of a pillar in the core. It can be seen that, again, the
lightest internal microstructure always gives the best sandwich, in our situation. The chosen value
R = 0.2142 mm is not optimal, but definitely close to it.

Fig. 13 shows the influence on the sandwich weight of the pillars density in the core. It is readily seen that
the smaller the number of pillars, the lighter the resulting structure, even if the stiffness constraint (2.1) is
always prescribed. This conclusion, however, cannot be taken into too much consideration, owing to the
delamination problems mentioned in Section 1, which will be briefly re-addressed later on. In our analysis,
we have set, as a lower limit to the pillar density, the value of 25 pillars/cm?, which means, for equal spacing
in the warp and weft directions, b, = b, = 2 mm.

Finally, Fig. 14 shows the effect of the variation of the core thickness (related to that of the skin thickness
by constraint (2.1)) on the sandwich weight. Despite all the non-linearities of the problem, we have here a
well defined single, absolute minimum for all resins and microspheres examined.

On the basis of these results, it is possible to set up a very much reduced optimization procedure of the
sandwich than that previously illustrated. One can in fact choose the lightest resins and microspheres, use
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the highest possible volume fraction of spheres and use the lightest possible sandwich-fabric panel (the
smallest pillar density compatible with delamination risks), and, thus, eliminate several design variables
from his problem, which is reduced to two variables only, the thicknesses of the core ¢ and of the
skins z.

It is then possible to operate at different levels of approximation. If one computes the stiffness of the
sandwich as indicated (i.e., using Egs. (2.1) and (2.5)—(2.8)), one obtains the “exact” result. A first ap-
proximation, which we indicate as approximation 1, may consist of choosing the much simpler expression
(2.10) for the shear stiffness. In this case, it is possible to express the variable ¢ as function of ¢, using the
approximation d =~ c¢ and always considering the three-point bending case /, = 0, through Eq. (2.1), ob-
taining

¢ VB (1 4BeG.3) [ClE, — CIE, — PG, +4BAEG, 4 — 4BAE G 2]

te) = =3 2E, (I — 4BcG, 1) (63)
Inserting expression (6.3) into Eq. (6.1) and equating to zero the derivative of the result with respect to c,
one obtains a non-linear equation in ¢, which can be solved via Newton’s method. We will comment on the
results in a moment.

A cruder approximation (approximation 2) can be obtained by adopting both the thin skins and the
antiplane core expressions for both the bending and the shear stiffness, i.e., Egs. (2.9) and (2.10). Again,
setting d =~ ¢, [, = 0 and solving Eq. (2.1) for ¢, one gets

B G}
 6Egc(4BcG.S - 1)

1(c) (6.4)

and, inserting this result into Eq. (6.1) and making it stationary with respect to ¢, one obtains a fourth-order
algebraic equation in ¢, which can be solved in the closed form.

We can finally discuss the obtained results. As said, the best sandwich is essentially the lightest one, even
if not necessarily made with the stiffest materials. The set of “optimum” parameters, as given by the “exact”
optimization procedure, is the following:
resin type 4 of Table 3;
microspheres type K1 of Table 4;

Pt = 16.21 mm;

Pt = 1.16 mm;

fort = 0.6 (maximum value allowed during the analysis);

boPt = poPt = 2.0 mm (maximum values allowed during the analysis);

skin properties: Eg = 16060 MPa; Gy = 4852 MPa;

syntactic foam properties: £, = 2076 MPa; G, = 783 MPa;

core properties: E. = 2160 MPa; G. = 811 MPa;

beam stiffnesses: D = 0.179 x 10° Nmm?; (GA*) = 0.723 x 10° N.

The sandwich weight is then Wy, = 1.249 N, which corresponds to a sandwich density p = 0.687 g/cm’.
To give an idea of the savings in weight, with respect to a conventional beam, we may say that a beam of
same length and width, made by a standard fiberglass reinforced resin (E = 16000 MPa, p = 1.8 g/cm?), in
order to exhibit the same stiffness needs a height # = 14 mm and a weight of about 2.5 N.

The two approximate optimization methods described above, applied by using the homogenized
Young’s moduli of the “optimum’” sandwich, yield the following results:

1. approximation 1. t°"* = 1.13 mm, ¢°®" = 16.4 mm;
2. approximation 2: °** = 1.452 mm, ¢°® = 17.535 mm.
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Only the first result can be considered reasonable from the engineering viewpoint; it is clear that the most
important error is introduced, for this sandwich, by the assumption of thin skins and antiplane core in the
bending stiffness D (approximation 2), and not by the use of the simple formula (2.10) for the shear stiffness
instead of the more complex Egs. (2.5)-(2.8).

We conclude this section by adding the results for the four-point bending case, in order to give an ex-
ample of how the loading condition affects the design of the sandwich. By setting /, = //3 as the distance
between the points of application of the concentrated forces in Egs. (2.2) and (2.3), one obtains the fol-
lowing “exact’ results:

e resin type 4 of Table 3;

microspheres type K1 of Table 4;

c°P' = 15.205 mm;

Pt = 1.1 mm;

fOPt = 0.6 (maximum value allowed during the analysis);

boPt = poPt = 2.0 mm (maximum values allowed during the analysis);

beam stiffnesses: D = 0.149 x 10° Nmm?; (GA*) = 0.679 x 10° N.

The approximate results exhibit the same type of error as in the three-point bending case.

The sandwich weight in this case is Wy, = 1.175 N, which corresponds to a sandwich density
p = 0.688 g/cm’. The same “conventional” fiberglass reinforced resin beam described above, designed to
exhibit the same stiffness in four-point bending, has height 4 = 12.87 mm and weighs 2.32 N. In both
loading cases, the saving in weight is of the order of 50%.

7. Open issues and conclusions

The optimization procedure outlined in this work is only a first step in the design of a sandwich, which
may be produced for a large-scale utilization. There is a number of problems still to be addressed, and even
in the elastic range, the conclusions indicated by this first analysis cannot be accepted without further
scrutiny.

We can immediately observe that optimization is possible with respect to several other loading and
geometry conditions; it is well known that different optimal microstructures are required depending on the
stress type — axial loading vs. beam bending or plate bending or fully three-dimensional stress states. The
extension of the analysis procedure followed here to all these loading conditions does not pose, however,
conceptual difficulties.

Another issue to be addressed is the influence of the pillar shape on the overall sandwich behavior. This
parameter is of the utmost importance in the behavior of the sandwich-fabric panel alone, as shown in Van
Vuure (1997). It is however very likely that in the filled sandwich, this aspect loses some significance; in fact,
in the sandwich, owing also to the extremely low volume fraction of the pillars (of the order of 5%), the core
properties, with reference to the sandwich bending and shear stiffness, are essentially those of the syntactic
foam (this is confirmed also by the very small difference between the elastic moduli of the foam and those of
the homogenized core given as “optimal” in Section 6). Such an analysis, in any case, would require mi-
crostructural techniques more sophisticated than the simple homogenization methods used in this work.

As said, the conclusions reached with respect to the elastic stiffness cannot be accepted without some
reservation. The optimum sandwich, with reference to its elastic stiffness only, is made up of the lightest
ingredients, i.e., the lightest resin and the maximum possible volume fraction of the lightest K1 micro-
spheres, with the lowest possible density of pillars in the core. All these choices have of course some
drawbacks, which need careful examination when designing a sandwich. The light K1 glassy microspheres,
for instance, tend to break during the production process of the syntactic foam, thus introducing both a
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degradation of the stiffness and a path for permeability. This reason alone is sufficient to reconsider such
choice.

The quest for a light core may suggest the use of non-glassy inclusions, or even to mix particulate in-
clusions with air. These are possible solutions, which need careful examination, outside the scope of this
work. An alternative solution may include the use of phenolic microspheres, as done in Bunn and Mottram
(1993); we have presently no experience of such materials.

Also, the density of pillars creates conflicting indications. As said earlier, the pillars give almost no
contribution, in bending and in shear, to the elastic stiffness, but they are essential to guarantee the absence
of risk of delamination between the skins and the core. This brings us to issues of strength, not addressed
here but currently under investigation. The only result obtained so far with reference to delamination in-
dicates that, for standard beam applications, a minimum density of pillars (i.e., the 25 pillars/cm? already
used in the production of the prototype sandwich) is more than enough to guarantee the ability of carrying
the shear stress arising in the three-point bending (Bardella and Genna, 1999).

Nothing has been done in the field of non-linear analysis of both the syntactic foam and of the final
sandwich, whose internal complexity poses a rather formidable problem. We are aware of some research
done on the non-linear behavior of woven fabric composites (see, for instance, Tabiei and Jiang (1999) and
references cited therein), but in all cases on two-dimensional fabric. Also, the issue of strength of syntactic
foams alone is important; experiments, done on the described syntactic foams filled with hollow glassy
spheres, indicate a brittle behavior both in tension and in compression, coupled with relatively high strength
(of the order of 100 MPa in compression and 50 MPa in tension). Different failure mechanisms have been
observed, related to different choices of spheres among the standard industrial batch of Table 4. All these
topics are the subject of work currently under way.

The results described in Section 6 indicate that despite the remarkable internal complexity of this
sandwich, its minimum weight design, with respect to the elastic behavior only and with reference to specific
geometry and loading conditions, does not require sophisticated optimization techniques. This conclusion
should help practicing engineers in designing such sandwiches for large-scale production.
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Appendix A

The coefficients Fi, F>, F3, F, and Hy of Eq. (3.1) are defined as follows, where G; and v; are the shear
modulus and the Poisson ratio of the inclusion wall and G, and v,, are the analogous elastic constants of
the matrix. If @, b and s are the radii of the composite sphere, as illustrated in Fig. 5, define

215 ¥ 3 at
:———6Vi—3+%(7+5\)i)ﬁ,

C
! 5a a

(A.1)
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2 b a*> 9a*
Cz25(7—5\)1);4—(5—4\)1)?—5[)4, (A2)
21 b o1 a*
2 b a*> 6at
42 b 6 3
Cs =5 +6v 5~ 5(7+5v)2i (A.5)
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then again
Ds;D¢ — D,D 3 D,Ds — DD a*
H=DDs—Dobrs o 5 3DoDs ~Dibed (A.17)
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